
A Multi-Planar Graph Visualization of Transformer Multi-Head Attention

Charles Ison*

Oregon State University

Figure 1: Visualization of multi-head attention is a 6 layer transition encoder trained to do sentiment analysis on tweets directed at major
airlines.

1 Introduction
Multi-head attention is the mechanism by which Transformer neu-
ral networks quantify the relationships between input elements. The
architecture was first proposed in 2017 by Vaswani et al. and has
since become one of the most popular architectures for a wide vari-
ety of machine learning tasks tasks [Vaswani et al. 2017], [Dosovit-
skiy et al. 2020], [Arnab et al. 2021]. Because of the success Trans-
formers have seen, there has been interest in using visualizations
of multi-head attention blocks as a tool for attempting to explain
Transformer’s performance [Vig 2019] [Clark et al. 2019] (see Fig-
ure 2 for an example). In the original paper, ”Attention Is All You
Need,” Vaswani et al. even included several attention visualizations
and argued they could help improve interpretability. Although these
visualizations are interesting and can help explain Transformer’s in-
ductive biases, they lack context of what roll the specific layer and
attention head plays within the overall neural network architecture
and eventual output. As an alternative approach, multi-head atten-
tion can be visualized as an interactive, 3D fully-connected graphs
that are connected across layers by their linear transformations.

*e-mail: isonc@oregonstate.edu

2 Background
Prior to the introduction of the Transformer architecture and multi-
head attention, the state of the art machine learning models for
sequential and time-series data were recurrent neural networks
(RNNs). RNNs are a type of neural network where the input to
each node is a single token from the input sequence along with the
output from the previous node in layer (see Figure 3 for an exam-
ple). Although this proved to be very successful, the reliance on
stepping through each input tokens chronologically was identified
as a limitation. For example, the further apart two tokens are in the
sequence, the harder it became to identify a relationship between
the two tokens. Long Short Term Memory networks (LSTMs) and
early attention mechanisms helped mitigate some of these prob-
lems, but Vaswani et al. were the first to propose fully removing
recurrent steps and focusing purely on attention in their paper ”At-
tention Is All You Need.” The intuition behind their idea was that by
representing tokens and their relationships using the dot product of
matrices, the relationships between each token could be calculated
efficiently all at once with no diminishing signal over time.



Figure 2: Visualization of attention heads from GPT-2 [Vig 2019].

Figure 3: Example RNN layer where each xi represents a sequential
input token and hi a sequential output token.[Olah 2015].

3 Multi-head Attention Definition
For completeness, a brief mathematical definition of multi-head at-
tention will be given below. For a more formal explanation of the
concept, please see [Phuong and Hutter 2022] which goes more in-
depth than the original ”Attention Is All You Need” paper.

Before starting multi-head attention, the input to the model needs
to be converted into matrix form. For example, if we are attending
to text, each word in the sentence could be converted to an embed-
ding vector of dimension d. For the entire sentence of length s, this
would yield a matrix X ∈ Rs×d (converting each word to an embed-
ding vector is done outside of the multi-head attention component
and is beyond the scope of this explanation).

Now that the sentence is in matrix form, the first step in multi-head
attention is a series of linear transformations on the input X to create
three separate new query, key, and values matrices:

Q =W QX , K =W KX , V =WV X (1)

where Q, K,V ∈ Rs×d and the learned weight matrices
W Q,W Q,WV ∈ Rd×d . Next attention is calculated using the
formula:

Attention(Q,K,V ) = so f tmax(
QKT
√

d
)V (2)

Breaking down the attention equation, first the dot product of the
query and the transpose of the key is taken to give a square matrix
of shape s× s. This dot product could be thought of as representing
the relationship between each token in the original input matrix X
(each token would represent one word in our hypothetical sentence
of text input). Then these relationships are scaled by square-root of
the token embedding dimension d and run through a softmax. The
softmax takes the scaled relationships between each input token and
assigns them to probability distribution such that:

so f tmax(xi) =
exi

∑
s
j=1 ex j

f or i = 1,2, . . . ,s (3)

Lastly, after the softmax, the result is scaled by the value matrix
to get the final attention calculation for a single head H ∈ Rs×d .
In this formulation, using the entire embedding dimension d, there
will only be one attention head. With multi-head attention though,
users can segment the original input matrix X ∈ Rs×d into multiple
input matrices:

X1, X2, . . . , Xi ∈ Rs×d j where d =
i

∑
j=1

d j (4)

These new input matrices can then be run through the same atten-
tion calculation to give:

Qi =W Qi Xi, Ki =W Ki Xi, Vi =WVi Xi (5)

Hi = Attention(Qi,Ki,Vi) (6)

And then finally joined back together through concatenation:

MultiHeadAttention(X) = concat(H1, ...,Hi)W o (7)

where MultiHeadAttention(X) ∈ Rs×d and the learned output
weights W o ∈ Rd×d .

Ultimately, the result of multi-head attention is just a matrix of
the same shape as the original input X . Because of this, multi-
head attention could be thought of as a transformation step that
needs to be done before eventual further processing is completed
to generate some output. Figure 4. shows the original Transformer
that was proposed for translation tasks and how multi-head atten-
tion is combined with traditional fully connected layers and an
encoder-decoder architecture to generate results. One disclaimer
about multi-head attention, is that it is not fundamentally a sequence
learning architecture, but rather treats the inputs as a set. In order
for multi-head attention to operate on sequences, pre-processing
steps such as positional encoding are required, which more details
can be found about in [Phuong and Hutter 2022] [Vaswani et al.
2017].

4 Related Work
There are two main subsections of related work for the proposed
interactive multi-head attention visualization tool. First, there
are other interactive visualization tools that have been developed
for more traditional neural network architectures such as convo-
lutional neural networks (CNNs) and fully connected neural net-
works. Two examples of these systems are the TensorFlow Play-
ground [Smilkov et al. 2017] and the TensorSpace Playground
[TensorSpace Team 2023]. The TensorFlow Playground provides



Figure 4: Transformer architecture [Vaswani et al. 2017].

an 2-dimensional network graph of a fully connected neural net-
work where users can change hyperparameters and watch the model
train based on these new settings. The TensorSpace Playground
provides a 3-dimensional visualization of pre-trained CNNs that
users can pass inputs into and watch how different layers impact
the final result.

The other direction for related work is researchers who have at-
tempted to use multi-head attention visualizations as a tool for ex-
plaining Transformer neural networks. Clark et al. inspected the
popular Transformer architecture BERT that is used for natural lan-
guage processing and claim to find attention heads that attend to
specific linguistic concepts [Clark et al. 2019]. Then Jesse Vig in-
troduced a visual analytic system that users can interact with to
view specific attention heads at specific layers in a Transformer (see
Figure 2 for an example) [Vig 2019].

5 Design
Based on discussion with peers and instructors in the Artificial In-
telligence department at Oregon State University, one of the biggest
blockers preventing adoption of visualization tools for working
with neural networks seems to be ease of use. In order to encourage
more frequent use, a tool should be easily built into traditional ma-
chine learning development workflows and relatively lightweight.
Because of this, the proposed mutlti-head attention visualization
tool was developed as a Python library that can be wrapped around a
Pytorch Transformer to generate the visualization at either training
or testing time. Pytorch is a Python machine learning framework
that is widely used in research and industry for the development
of neural networks [Paszke et al. 2019]. Furthermore, within the
Pytorch library, there is a predefined Transformer neural network
module and multi-head attention module that developers can use as
building blocks for more complicated architectures. The multi-head

attention visualization tool is specifically designed to interact with
these predefined modules. Users can simply wrap the module they
wish to visualize and then pass a flag on the forward pass if they
would like to intercept the input and generate the interactive graph,
otherwise the Transformer neural network or multi-head attention
block will operate exactly as normal. Below is some example code
showing how this would work:

1 import torch.nn

2 import viz_tool

3

4 // Fetch data

5 data = fetch_data ()

6

7 // Define default Pytorch Transformer

8 transformer = nn.Transformer ()

9

10 // No visualization created

11 output = transformer.forward(data)

12

13 // Wrap default Pytorch Transformer

14 transformer = viz_tool.Wrapper(transformer)

15

16 // No visualization created

17 output = transformer.forward(data)

18

19 // Visualization created

20 output = transformer.forward(data , viz=True)

Within the tool two main outside libraries are used besides Pytorch:
NetworkX [Hagberg et al. ] to create the initial 3D graph layouts
and then Matplotlib [Hunter 2007] to draw the 3D graphs and allow
for user interaction. Users are able to zoom in and out of the graph,
rotate the graph by clicking and dragging, and select specific nodes
and edges on the graph for further inspection.

For the design of the actual graph, we will refer back to several con-
cepts from the previously given definition of multi-head attention
and the Transformer architecture graph from Figure 4. The first step
is to think of the square matrix of probabilities given by the softmax
from Equation 2 as a fully connected graph representing the rela-
tionships between each token in the input sequence. Here is where
the first step has to be taken to abstract some inner workings from
the user, the square matrix actually represents two fully connected
graphs (one representing the forward relationship between each set
of tokens and one representing the backwards relationship between
each set of tokens). Rather than trying to visualize two fully con-
nected graphs at each layer, the decision was made to simply sum
the probabilities in order to create one fully connected graph that
represents both the relationship in the forward and backwards di-
rection. Next, this fully connected graph was drawn for each multi-
head attention layer that was included in the Transformer (typically
values for the number of layers can range from 6 all the way to 24
and up).

Then each layer’s fully connected graph can be connected by apply-
ing the dot product from the value matrix in Equation 2 to the square
softmax matrix represented by the fully connected graph. This step
transforms the multi-headed attention back to the shape of the orig-
inal input matrix and provides the starting point for the next layer
in the graph. It should be noted, once again there is a small amount
of information hidden from the user here. Referring to Figure 4
again, there is a fully connected layer after the multi-head attention
that expands the input dimension to some larger embedding dimen-
sion dmax and then applies another linear transformation to shrink
the embedding dimension back to d. This step could be easily vi-
sualized as a expansion and contraction of the graph, but it greatly
clutters the visualization while providing little new value on the re-
lationships between the tokens. Because of these reason, it has been



left out of the visualization for now.

Finally, to visualize the multi-head attention weights in the graph,
edge opacity was used. All of the weights first had their absolute
value taken and then normalized between [0, 1]. Using this ap-
proach, the edge should gradually fade or disappear if two tokens
are loosely related and appear normally if the relationship is strong.
Alternatives to this approach could leverage distance between nodes
and introduce edge colors.

6 Results
The code to run the visualization will be included in a zipped file
along with this paper. Currently the code is sitting within a Jupyter
Notebook to allow for easier exploration and tinkering, but could
be easily ported into Python library when it is ready for release.
One note on running the code, it should be run using JupyterLab to
allow for the visualization to be interactive.

In order to test the code, I trained a 6-layer Transformer encoder
to perform sentiment analysis on Twitter tweets directed at major
airlines. The Transformer encoder can be seen on the left side of the
architecture in Figure 4 and is a sub-component of the Transformer
architecture that is typically used for classification tasks, whereas
the decoder and entire encoder-decoder Transformers are typically
used for generative tasks. The goal for using a simple Transformer
encoder was to create a toy example that was easy to understand for
earlier iterations of the visualization tool. On top of the multi-head
attention visualization tool already proposed, a visualization was
added for the final fully-connected classification layer that exists for
encoder only Transformers. The goal here was to make it easier to
see how the multi-head attention was contributing to the final output
from the model. This is a custom visualization step though and the
proposed library would not be able to automatically generate this
step unless it knew the model was an encoder only Transformer
performing classification.

A major critique of the results is the differences in edge opacity,
while visible, do not convey enough information about the relation-
ships. In future iterations of the tool, different normalization tech-
niques, colors, and edge lengths should all be experimented with as
alternatives. Another critique of the current mechanism is it only
allows for the visualization of one headed attention. It should be
trivial to extend the existing code to multi-head attention, but be-
fore this is done the opacity issue needs to be fixed to make the
inclusion of more information in the visualization meaningful for
users.

7 Future Work
The first step in future work should be attempting to fix the cri-
tiques discussed the results section. Once a mechanism for visual-
izing edge weights has been decided upon, some user studies with
the model should be conducted to evaluate it’s usability. One idea
would be presenting several researchers with a Pytorch model that
has a clear bug and seeing if they could debug the issue using the
visualization.

Another direction for future work, could be investigating ways to
prune the graph or perform dimensionality reduction so that mod-
ern Transformers which can contain billions of parameters can be
visualized using the tool. If the tool was used as is with a modern
Transformer architecture (for example a large language model like
Chat-GPT) it would likely crash or simply present the user with an
overwhelming amount of data.

One final research direction would be visualizing the topological
properties of the graph at both training and testing time. Formation
of cliques and cavities within traditional feed-forward neural net-
works has been shown to fluctuate during the training of neural net-

works [Corneanu et al. 2019] and visualizing this information dur-
ing training time could provide users with an intuition about when
their model is beginning to overfit the data. Furthermore, examin-
ing this information during testing time could help debug incorrect
model performance. One outstanding problem in this research di-
rection, is previous work on the topological characteristics of neural
networks has focused on simpler fully connected networks. It is not
immediately clear how those previous approaches could be lever-
aged on Transformer architectures, particularly when multi-headed
attention could be thought of as a weighted clique.

References

ARNAB, A., DEHGHANI, M., HEIGOLD, G., SUN, C., LUCIC,
M., AND SCHMID, C. 2021. Vivit: A video vision transformer.
CoRR abs/2103.15691.

CLARK, K., KHANDELWAL, U., LEVY, O., AND MANNING,
C. D., 2019. What does bert look at? an analysis of bert’s atten-
tion.

CORNEANU, C. A., MADADI, M., ESCALERA, S., AND MAR-
TINEZ, A. M. 2019. What does it mean to learn in deep net-
works? and, how does one detect adversarial attacks? In 2019
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), 4752–4761.

CORNEANU, C. A., MADADI, M., ESCALERA, S., AND
MARTÍNEZ, A. M. 2020. Computing the testing error without a
testing set. CoRR abs/2005.00450.

DOSOVITSKIY, A., BEYER, L., KOLESNIKOV, A., WEIS-
SENBORN, D., ZHAI, X., UNTERTHINER, T., DEHGHANI,
M., MINDERER, M., HEIGOLD, G., GELLY, S., USZKOR-
EIT, J., AND HOULSBY, N. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. CoRR
abs/2010.11929.

HAGBERG, A., SWART, P., AND S CHULT, D. Exploring network
structure, dynamics, and function using networkx.

HUNTER, J. D. 2007. Matplotlib: A 2d graphics environment.
Computing in Science & Engineering 9, 3, 90–95.

OLAH, C., 2015. Understanding lstm networks.

PASZKE, A., GROSS, S., MASSA, F., LERER, A., BRADBURY,
J., CHANAN, G., KILLEEN, T., LIN, Z., GIMELSHEIN, N.,
ANTIGA, L., DESMAISON, A., KÖPF, A., YANG, E., DEVITO,
Z., RAISON, M., TEJANI, A., CHILAMKURTHY, S., STEINER,
B., FANG, L., BAI, J., AND CHINTALA, S., 2019. Pytorch: An
imperative style, high-performance deep learning library.

PHUONG, M., AND HUTTER, M., 2022. Formal algorithms for
transformers.

SMILKOV, D., CARTER, S., SCULLEY, D., VIÉGAS, F. B., AND
WATTENBERG, M. 2017. Direct-manipulation visualization of
deep networks. CoRR abs/1708.03788.

TENNEY, I., DAS, D., AND PAVLICK, E. 2019. BERT rediscovers
the classical NLP pipeline. CoRR abs/1905.05950.

TENSORSPACE TEAM, 2023. Tensorspace.js. [Online; accessed
12-April-2023].

VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J.,
JONES, L., GOMEZ, A. N., KAISER, L. U., AND POLO-
SUKHIN, I. 2017. Attention is all you need. In Advances
in Neural Information Processing Systems, Curran Associates,
Inc., I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30.



VIG, J. 2019. A multiscale visualization of attention in the trans-
former model. CoRR abs/1906.05714.


	Introduction
	Background
	Multi-head Attention Definition
	Related Work
	Design
	Results
	Future Work

