CS 453/553 Term Project: Visualizing the Loss Landscape of Neural Nets

Charles Ison*
Oregon State University

1]

VI

iy I N
i AR u =
SEssZe I N 5 (F
e /] Ty 0. N 3
o), 8 Vs,
.,Aﬁéiwfﬁégﬁ’ VA, amégéa'
[FHIFTFTFFFTTF -
e et o
| IR ITIL
EEEEE LTI

Matthew Morgan*
Oregon State University

Figure 1: Loss landscapes of the ResNet-50 model from PCA dimensionality reduction, with the gradient decent path. The landscape is
visualized in (a) 2D with contours, (b) 3D with contours and mesh base, and (c) 3D with only mesh

Abstract

The training of artificial neural networks is a process highly sen-
sitive to architecture choices and hyperparameter tuning. Often
these decisions are made by practitioners because it allows them
to achieve the best loss for a certain set of parameters and architec-
ture, without a broader understanding of where they are operating
within the model’s loss landscape. By visualizing both the model’s
loss landscape and path during gradient descent towards some lo-
cal minimum, we can gain intuitions about how tuning and archi-
tectural decisions impact the model’s ability to converge. In this
paper, we implement two separate methods proposed by
[2018]|. For each method, we perform dimensionality reduction on
a model’s weights during backpropagation, then iteratively manip-
ulate the weights using these techniques to generate scalar fields
or loss landscapes. Finally, we evaluate our results on two popular
neural network models: ResNet-50 and VGG-11.

Keywords: loss landscape, scalar field topology, neural networks,
convolutional neural networks, backpropagation, gradient descent.

1 Introduction

In the last decade, the use of artificial neural networks for machine
learning tasks has proliferated due to rapid gains in available com-
puting power for practitioners. Recent improvements have shown

“e-mail: {isonc|morgamat}Qeecs.oregonstate.edu

artificial neural networks become the benchmark for many tasks
such as image classification and natural language processing [Abio-|
dun et al. 2018]]. This success has led to substantial interest in meth-

ods that can be used to tune and optimize artificial neural networks.

One mechanism for cutting through this noise is using loss land-
scapes to visualize and reason about how hyperparameter tuning
and the use of different architectures impact the model’s ability to
converge. In the paper, ”Visualizing the Loss Landscape of Neu-
ral Nets” (https://arxiv.org/pdf/1712.09913.pdf) Li et al.
reduce the dimensionality of neural networks weights during dif-
ferent training epochs and then iteratively manipulated the reduced
weights to generate intuitive loss landscapes. In this paper, we build
off of their work by constructing and training two popular con-
volutional neural networks (CNNs): ResNet-50 and VGG-11, and
adding our own visualizations of the loss landscapes in OpenGL.

We constructed our CNNs in Python using the PyTorch li-
brary, then trained and tested our models on the CIFAR-10
dataset (https://www.cs.toronto.edu/~kriz/cifar.html).
The CIFAR-10 dataset is a collection of 6000 color images
that are 32x32 pixels and contain 10 separate classes (see Fig-
ure 2 for examples). The models were then trained using a
batch size of 10 for 10 training epochs and evaluated using
cross entropy as the loss function (https://pytorch.org/docs/
stable/generated/torch.nn.CrossEntropyLoss.html).

2 Previous Work

Although there have been many studies on optimizing artificial neu-
ral networks in order to improve training time and model perfor-
mance, less work has been conducted on visualizing the losses to
gain intuition about how these decisions impact the loss field’s con-
vexity. One of the earlier works in the space was published in 1997
by [Hochreiter and Schmidhuber 1997]. The authors defined the
“flatness” of a loss landscape as the size of the connected region
around the minimum where the training loss remains low. Visual-
izations were then built to show “flatness” to better understand the
areas where artificial neural nets minimize loss. In the time since

https://arxiv.org/pdf/1712.09913.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html

airplane %yﬂ’r’.nz‘;ﬂ
automobile Eﬂﬁht

oo Small W ¥ B
« PEAEDSEEEsP

SRS S
w EESE® B R
- FEEWEYSARE
LRGP
=
dELNEE SO E

Figure 2: Series of example images from the CIPHAR-10 dataset

deer

horse

truck

then, technology rapidly advanced, and along with it the complexity
of neural networks. The paper we are implementing, ~’Visualizing
the Loss Landscape of Neural Nets”, is one of the first to visual-
ize the loss landscapes of modern architectures using both normal-
ized random direction iteration and PCA as dimensionality reduc-
tion techniques. Since the paper was released in 2018, numerous
other works have cited it. However, many of the citations are not
from works attempting to advance the visualizations, but rather to
learn from the visualizations and develop more generalizable and
accurate models. The visualizations have come in handy for re-
searchers studying reinforcement learning models such as
and Glmiis and [[Plaat 2022].

There are some recent works that produce new visualizations of
loss functions. One such by [[Huang et al. 2020], ”Understanding
Generalization Through Visualizations”, uses visualization meth-
ods to give intuitions about why certain architectures generalize
better than others. They first visualize loss as a scalar field with
height and color representing the output. But they also use a col-
ored dot plot and a ”Swissroll decision boundary” to show the dif-
ference in models that perform well versus models that perform
poorly at generalizing. An interesting extension of this work by
[Linse et al. 2022] visualizes large neural networks in virtual real-
ity. The approach allows for high interactivity but requires a virtual
reality headset and a powerful computer to render.

3 Background

Artificial neural networks are constructed from interconnected
nodes that are then layered to create deep learning models. These
models draw inspiration from biological neural systems
[and Nash 20153]. Since the introduction of artificial neural net-
works, many unique architectures have been proposed that special-
ize is specific tasks such as Recurrent Neural Networks (RNNs) for
sequence learning and Transformers for natural language process-
ing. One architecture that has been at the forefront of image classi-
fication for many years is Convolutional Neural Networks (CNNs).
The main feature of CNNSs is a series of convolutional layers that
operate on local regions within images to learn patterns and propa-
gate this information through the network. Two of the more popular

permutations of CNNs are ResNet and VGG [He et al. 2015]].

4 Methods

4.1 Random Direction Iteration

To perform dimensionality reduction using random direction itera-
tion, we followed the approach proposed by [Li et al. 2018]. First,
we trained the model for 10 epochs and extracted the final trained
weights 6. Then, we generate two vectors & and 1 with the same
shape as 6 and fill them with values selected from a random Gaus-
sian distribution. Finally, we normalize § and 1 so their magni-
tudes are proportional to the final training weights 6. Using this
setup, we can generate the data for our loss landscape using the fol-
lowing formula, where o and f3 represent iterators and will serve as
the coordinates for our eventual scalar field:

fle,B)=L(6,+0ad+) (1)

This approach works due to the theorem that two random vectors
selected from high-dimensional space will be nearly orthogonal.
While this method works for performing dimensionality reduction
in a computationally lightweight way, it does have one significant
limitation. Because we are iterating in random directions, there is
no guarantee that the generated loss landscape will correspond with
the direction the model’s weights take during gradient descent.

4.2 Principal Component Analysis

To solve the problem of visualizing the model’s weights during gra-
dient descent, changed their approach from random
direction iteration to using PCA. PCA is a well documented di-
mensionality reduction technique that operates by selecting com-
ponents that are associated with the largest amount of variance in
the data. We apply this technique by generating a matrix of the dif-
ferences between the model weights at each training epoch and the
final model weights:

M=16p—06y,...,0,—1 — 6] 2)

and then applying the scikit-learn implementation of PCA to this
matrix. The result gives us two vectors that capture the largest
amount of variance along the model’s path toward convergence and
can then be used as § and 1 in Formula 1.

5 Results

5.1 Random Direction lteration

We were able to generate the most detailed scalar fields for the
random direction iteration dimensionality reduction approach via
a 25x25 grid-based permutation of the ResNet and VGG models’
weights. This required mutating and testing the models 625 times
each, which we were not able to complete in a reasonable amount of
time on our personal computers or by leveraging free GPUs avail-
able from Google Colab. As such, we turned to the Oregon State
University’s High Performance Computing Cluster (HPC) which
was able to generate the required data in approximately 1 hour for
ResNet and 2 hours for VGG. Special handling was required for the
ResNet visualization in OpenGL as the model diverged to extreme
losses and therefore needed to be normalized for human readability
(see Table 1). Our approach to normalizing the data was to set a loss
threshold such as 1.0, such that any data with a loss greater than the
threshold would be removed from the visualization. Similar to the
original authors’ findings, we were not able to successfully visual-
ize the gradient descent path using random direction iteration.

5.2 Principal Component Analysis

Similarly to Random Direction Iteration, we were able to generate
the most detailed scalar fields for the PCA dimensionality reduc-
tion approach using a 25x25 grid-based permutation of the ResNet

and VGG models’ weights. This also required leveraging Oregon
State University’s HPC which was able to generate the required
data in approximately 1 hour for ResNet and 2 hours for VGG.
One weakness of PCA that we ran into was it required exceedingly
high amounts of random-access memory to compute and would fre-
quently cause issues on platforms other that the HPC. Unlike using
random direction iteration, both VGG and ResNet required special
normalization within OpenGL to make the data human readable due
to divergence towards extreme losses on the edge of the model per-
mutations (see Table 1). With the PCA approach, the path of gradi-
ent descent became visible through the loss landscape unlike with
the random direction iteration approach (see Table 1).

6 Evaluation

Once we had generated the required data on the Oregon State Uni-
versity High Performance Computing Cluster, we began exploring
the data using scalar field visualizations in OpenGL. The first con-
clusion we reached was that visualizing the data with color maps
in both 2D and 3D was not sufficient to analyze the loss landscape
topology. Within 2D, the gradient changes are often so dramatic
that simple colors do not convey the required information. Within
3D, the vase-like structure of loss landscapes that drops down to lo-
cal minimums will hide much of the internal topology if the curves
are solid colors. Because of these deficiencies, we decided a mix-
ture of meshes, contours, and colored contours were the easiest vi-
sualizations to understand (see Table 1 for a tabular presentation of
these visualizations).

Once we had agreed on the most effective approaches for visualiz-
ing the loss landscapes, we evaluated the most effective method for
visualizing the gradient descent. For reasons discussed earlier, the
random direction iteration was not effective at visualizing the gra-
dient descent, but PCA generated meaningful coordinates for each
training epoch. Therefore, we constructed a curve of the gradient
descent using polylines in OpenGL and colored the line segments
to match the respective loss. It would be logical to use the same
color gradient we used for our contour lines on the gradient descent
curve, but then the gradient descent’s path was frequently obscured
by the contour lines. Because of this, we opted to give the contour
lines and the gradient descent lines contrasting colors. Observing
the path of the contour line through the loss landscape, the path
aligns with the theoretical definition of gradient descent as it tra-
verses along the path of least resistance and approximately perpen-
dicular to each contour line.

Next, we attempted to make generalizations about the Resnet-50
and VGG-11 models based on the loss landscapes. The first ob-
servation we noticed when looking at the random direction scalar
fields, was the ResNet-50 model was diverging with far fewer per-
mutations than the VGG-11 model. Using this, one could infer that
VGG-11 would be more robust to an aggressive learning rate with-
out risking divergence. This information could help reduce training
time for image recognition tasks or allow for training on hardware
with less capability than the HPC. Finally, when inspecting the crit-
ical points of the loss landscape in Figure 3, we see multiple local
minimums that exist along the path toward the optimum minimum
our model eventually reached. These local minimums create a risk
where if too small a learning rate was used, it would be possible for
a model to get stuck in a non-optimal solution. This creates even
more risk when considering we also found ResNet-50 is in danger
of diverging if the learning rate is too large. Unlike Resnet-50, we
never were able to create a VGG-11 loss landscape with more than
1 minimum. The combination of these findings gives evidence to
suggest that VGG-11 would be a more easily and reliably trained
model for image classification tasks on data similar to the CIPHAR-
10 dataset.

Figure 3:

The 3D loss landscapes with critical points of the
ResNet-50 model using random direction iteration for dimension-
ality reduction.

7 Division of Tasks

Charles took responsibility for creating and training the ResNet
and VGG models on the CIFAR-10 dataset using Pytorch libraries
in Python. He then implemented the dimensionality reduction
techniques of principal component analysis and normalized ran-
dom direction iteration. Then, by iteratively manipulating the
model weights according to the dimensionality reduction tech-
niques, Charles generated the data required to visualize the loss
landscapes. Finally, as a proof of concept, Charles wrote Python
code using MatPlotLib to visualize the loss landscapes in Python
to confirm the code was working as expected before extending the
project into OpenGL.

Matthew then took responsibility for writing the recorded loss land-
scape data from Python to PLY files which could be uploaded and
visualized in OpenGL. Once in OpenGL, Matthew applied the tech-
niques of mapping the landscape to color, visualizing the loss as
height, and drawing contour lines across the scalar field. Addition-
ally, Matthew took data from the model’s training iterations and
plotted the path of gradient descent through the loss landscape as a
line traversing the scalar field. Last, he compared and contrasted the
different techniques to find the optimal combinations and discussed
how they might be interpreted.

8 Conclusions

We implemented methods described in Visualizing the Loss Land-
scape of Neural Nets” (https://arxiv.org/pdf/1712.09913.
pdf) for creating loss landscapes of artificial neural networks us-
ing multiple methods of dimensionality reduction. Next, we visu-
alized our results in OpenGL using a mixture of contour lines and
meshes, which we found to create the most easily understood repre-
sentations of the data. Within the loss landscape, we visualized the
path of gradient descent for our models and saw the expected paths,
adding a layer of confidence that our loss landscapes were accurate.
Finally, we were able to make generalizations about the trainability
of the VGG-11 and ResNet-50 models based on the observations
from the loss landscapes.

References

ABIODUN, O. I., JANTAN, A., OMOLARA, A. E., DADA, K. V.,
MOHAMED, N. A., AND ARSHAD, H. 2018. State-of-the-art in

https://arxiv.org/pdf/1712.09913.pdf
https://arxiv.org/pdf/1712.09913.pdf

artificial neural network applications: A survey. Heliyon 4, 11,
e00938.

BEKCI, R. Y., AND GUMUS, M., 2020. Visualizing the loss land-
scape of actor critic methods with applications in inventory opti-
mization.

HE, K., ZHANG, X., REN, S., AND SUN, J., 2015. Deep residual
learning for image recognition.

HOCHREITER, S., AND SCHMIDHUBER, J. 1997. Flat minima.
Neural computation 9, 1, 1-42.

HUANG, W. R., EMAM, Z., GOLDBLUM, M., FOWL, L., TERRY,
J. K., HUANG, F., AND GOLDSTEIN, T. 2020. Understand-
ing generalization through visualizations. In Proceedings on "I
Can’t Believe It’s Not Better!” at NeurlPS Workshops, PMLR,
J. Zosa Forde, F. Ruiz, M. F. Pradier, and A. Schein, Eds.,
vol. 137 of Proceedings of Machine Learning Research, 87-97.

L1, H., Xu, Z., TAYLOR, G., STUDER, C., AND GOLDSTEIN,
T. 2018. Visualizing the loss landscape of neural nets. In Ad-
vances in Neural Information Processing Systems, Curran Asso-
ciates, Inc., S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31.

LINSE, C., ALSHAZLY, H., AND MARTINETZ, T. 2022. A walk
in the black-box: 3d visualization of large neural networks in
virtual reality. Neural Computing and Applications, 1-16.

O’SHEA, K., AND NASH, R., 2015. An introduction to convolu-
tional neural networks.

PLAAT, A. 2022. Deep reinforcement learning. arXiv preprint
arXiv:2201.02135.

9 Appendix

Table 1: Loss Landscapes

Strategy Reduction ResNet-50 VGG-11
T SSSNAUAN
/ Z, = NN
= Z SSNNN VAW
Z itz ===~ SS NN\l
227 =7 === NN\
/ = —0\\

= ZZSESSWA AN
allid SESTANMNINAN
/ 7 AR SNNNWANNN
(i 1% NUAOW T
< i et
|
2D Contour | Random > AN iRl eS oA
Lines Direction - TI\NIVITIANS e

Iteration =V AN =4 i
T ATALMA e
a S NS~ Zivianininin
C NS it Aaw /AN
NENARNNN\E=ZS7Z e

INENAS\S\=EZE_ %7 i)

NRNSNSE=Z =/ O™

NN I
\F NS]
NRENECEE =

1111/

N
=N
/ T~
2D Contour | PCA
Lines 1
|\
N
|
[T 1]
(
3D Contour | Random
Lines Direction
Iteration
I
1 T i
e ————
T e
SS=S=ESSSSSSNNANNN S
% ZESSSSS=oSn NN\
e e e =SSN -
o e ==~ SN
\Czg SSSONNN -
AD Contour | PCA &7\\\1\‘ g N NN
! SN RN/ ————
o SN NMNRIUVANY /T —
BRI

3D Mesh

Random
Direction
Iteration

—

— =

e —
——

LAl
| w“z‘/‘”f

=

3D Mesh

PCA

.......
7~ -
i’.f........... 7

7
VI
.V
2

I T
7~
’.........
2 Vi
L7 A .g'!! l,y‘é““‘,','........
- iy
= il 2
NN N,
SSEN \§\\\~ iy,

=2\
N ‘
. y

i 7
i
=

/)
/]

i
g
Irg
H
[]

	Introduction
	Previous Work
	Background
	Methods
	Random Direction Iteration
	Principal Component Analysis

	Results
	Random Direction Iteration
	Principal Component Analysis

	Evaluation
	Division of Tasks
	Conclusions
	Appendix

